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Four quadrature schemes have been tested and compared in considerable detail to 
determine their usefulness in the noniterative integral equation method for single channel 
quantum mechanical calculations. They are two forms of linear approximation (Trape- 
zoidal rule) and two forms of quadratic approximation (Simpson’s rule). Their im- 
plementation in this method is shown, a formal discussion of error propagation is 
given, and tests are performed to determine actual operating characteristics on various 
bound and scattering problems in different potentials. The quadratic schemes are 
generally superior to the linear ones in terms of accuracy and efficiency. The previous 
implementation of Simpson’s rule is shown to possess an inherent instability which 
requires testing on each problem for which it is used to assure its reliability. The alter- 
native quadratic approximation which we propose does not suffer this deficiency, but still 
enjoys the advantages of higher order. In addition, the new scheme obeys very well an 
h* Richardson extrapolation, whereas the old one does so rather poorly. 

1. INTRODUCTION 

In recent years, the noniterative integral equation method suggested by Sams and 
Kouri [l] for close-coupled calculations has been applied successfully several times 
to both scattering and bound state problems [2]. While some work has been done 
toward investigating various quadrature schemes [3], we have undertaken a more 
extensive study of four different schemes aimed at recommending a “best available” 
scheme for the noniterative method. We make comparisons based on efficiency 
considerations and error characteristics for each scheme. 

We expect efficiency considerations to be meaningful here-the same program- 
ming skills will be used with each scheme since there is only one programmer. 
Storage requirements for the various schemes have not been analyzed in detail. We 
have attempted to analyze error propagations analytically, and have then examined 
actual errors in numerous computations. Finally, a generalization of the 
Richardson extrapolation technique has been proposed and shown to be very 
useful for obtaining highly accurate results. 
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This paper presents results on single channel calculations only. The 
corresponding multichannel study is now in progress, and both efficiency and 
storage are of importance there. 

2. THE PROBLEM AND ITS SPECIAL PROPERTIES 

We are interested in the numerical solution $ of the equation 

5@) = u(r) + lorn f(r3 dr,) VW q&9 dr’, (1) 

where u, f, g, and V are known functions. The extension of our techniques to 
coupled equations, or even those containing finite rank nonlocal potentials is 
straightforward. We shall apply (1) to the calculation of both scattering states 
(U = f) and bound states (u = 0). 

For either U, (1) may be put into the equivalent Volterra form (see Appendix A) 

4(r) = g(r) -4(r) + f(r) B(r), (24 

A(r) = /oTf(r') V(r') +(r') dr', G'b) 

B(r) = 1 - f'g(r') V(r') (b(r') dr', (24 
0 

where 4(r) is some multiple of #. These are the basic equations of the noniterative 
method. To examine their properties, it is convenient to define the vector 

By differentiating (2b) and (2c), and using (2a), one easily obtains the coupled, 
first-order differential equations [4] 

P’(r) = M(r) * P(r), (4) 

where 

(5) 

These equations are completely equivalent to (2), and permit a wide range of 
methods of solution [5, 61. 
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The martrix M has two important properties. First, it can be expressed as the 
outer product of two vectors, 

(6) 

M(r) = W(r) I’(r) U+(r). (7) 

Furthermore, since U and W are orthogonal, M is nilpotent and 

M(r) . P’(r) = 0. (8) 

This second property gives the method its noniterative character, as we now 
demonstrate. The schemes we consider here for integrating (4) are based on 
numerical integration formulas of the general form [7] 

P, = P, + i IxjPj’, 
j=m 

(9) 

where {cx~} are a set of quadrature weights, Pj = P(r&, and {rj} are the quadrature 
points. If we multiply (9) by M, and use (4) and (8) we obtain 

n-1 

P,’ = M, * P, + c OljPj’ . 
m 

This is then used to eliminate P,’ from the r.h.s. of (9), with the result 

P, = (1 + ol,M,) * (Pm + 5’ ajPjl). (11) 

WV 

\ m / 

Thus, P at r, only depends on P at earlier quadrature points. Because one can 
obtain P,’ before obtaining P, , closed-form integration formulas with their 
attendant high accuracy may be employed without the usual predictor-corrector 
type iteration. 

This demonstration can also be given in the usual wavefunction form by noting 
that 

+j = Uj’ - Pj . (12) 

Using (4), (7), and (12) in (9) and setting m = 0 gives the quadrature form of (2a) 
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the term j = IZ vanishes by orthogonality of U, and W, . For the numerical 
analysis of the noniterative method, we think P to be the proper object of attention; 
derivations are much more concise, and the method of error analysis is more 
apparent. As a bonus, the algorithms we have constructed from these derivations 
are slightly more efficient than what we were able to construct from the wave- 
function derivations of the same quadrature schemes. 

3. QUADRATURE SCHEMES 

The four schemes considered in this paper for the integration of (4) are (A) the 
trapezoidal rule, (B) the “overlapped” trapezoidal rule, (C) our own quadratic 
rule, and (D) the “overlapped” Simpson’s rule. We have coded reasonably efficient 
algorithms for each scheme, and indicate the investment per step of solution by 
giving the number of multiplications required (the number of additions being 
insignificant). 

(A) Trapezoidal Rule 

This is the most-used scheme of the four. The rule is 

P - pm + WXPn’ + Piz,l), n+1 - (14) 

where h is the step size, and the local truncation error is -/?P”‘/12. Following (9)- 
(1 l), we obtain the working equation 

P n+l = (1 + W) Mn,,) * (Pn + (h/2) P,‘). (15) 

This is most efficiently programmed by defiining the auxillary vector 

Q, = P, + W2) P,’ = (1 + (WI M,) * P, (16) 

and doing all integrations, except the first and last step, by 

Qn+l = (1 + hMn+d . Qn . (17) 

Integration by this scheme requires six multiplications to advance from r, to r,+l . 

(B) Overlapped Trapezoidal Rule 

For ordinary first-order equations, Milne suggests the simple midpoint rule [S] 

P n+2 = P, + 2hPh+, = P, + 2hM,+, - P,+l , (18) 



VOLTERRA INTEGRAL EQUATIONS 375 

where h is again the step size, and the local truncation error is hSP”‘/3. Given P at 
r, and r,,, , this allows its evaluation at rn+2 . The scheme continues by “over- 
lapping” the rule at points r,,, and r,,+2 to get P at m+3 . Since only P, is given, 
some other scheme such as scheme (A) must be used to obtain a P1 in order to 
start this procedure. This scheme also requires six multiplications per step. 

(C) Quadratic Rule 

This scheme is new, and is one of the main results of this paper [9]. It uses 
Simpson’s rule (a quadratic approximation) in both the one- and two-step forms 
WI 

P - I', + (h/12)(=', + 8P;+, - I';,,), s+1 - (1% 

P n+2 = Pn + (WPn’ + 4Pk1 + P:,,). (20) 

These rules have local truncation errors of h4Pt4)/24 and -h6P(6)/90, respectively. 
respectively. We multiply (19) by M,+1 to get an equation for Pb,, in terms of 
Pb+2, and multiply (20) by M,,, to get an equation for P5+2 in terms of PL,, . 
These can be solved by simple substitution to get 

LI *P:+, = M,,, *(R, - VW Mn,, *%A (21) 

L, -Pi,+2 = Mm+2 l (S, + (W) Mn+l * W, (22) 

where 

L, = 1 + (h2/9) M,+I .Mn+2, 

L, = 1 + (h2/9) Mm+2 * M,+l , 

R, = P, + (5h/12) P,‘, 

S, = P, + (h/3) P,‘. 

(23) 

(24) 

(25) 

(26) 

The special properties of M now allow immediate inversion of L1 and L2 . In fact, 
these matrices are easily shown to be multiples of each others’ inverses: 

Ip-r = L, l Lz = L, * L, = [l - (+ eh)2 Vn+lVn+z] I, (27) 

e = UL+2 l Wn+l = gn+2fn+l - fn+2gn+l . (28) 

Therefore, multiplying (21) by L2 , and noting L, . M,+l = M,,, , gives 

(29) 
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and multiplying (22) by L, , noting L, * Mn+2 = Mla+2 , gives 

Pi+, = PM,+, * @n + (4W3) Mn+l * W. (30) 

These two results are then used in (20) to get Pn+2 . We keep both P, and P,’ in 
storage to advance from rla to rn+2 . We then keep P,,, and Pi,, for the next cycle. 
By calculating and storing combinations of constants beforehand (note that e is 
independent of n for fixed h) we have constructed an algorithm requiring 26 multi- 
plications and 13 additions, or 13 multiplications per step. 

Because the result is useful later for deriving the error law, we note that (19) can 
be multiplied by (4/z/3) M,,, and added to (20) to give an equation relating Pn+2 
and P, directly: 

( 1 - ; Mn+z + ; K+I * Mn,,) * P,,, 

= l+~M,+~M,+,+;M,+,~M,)~P,. 
( (31) 

The necessity of inverting the matrix on the 1.h.s. makes this procedure far more 
difficult than the one we have given. 

(D) Overlapped Simpson’s Rule 

Finally, we consider the application of Simpson’s rule which has been made 
previously [3]. Employing the transformations (9)-(11) on the rule in (20), we get 

P n+z = Cl+ (h/3) M,+J * (Pn + (h/3) P,’ + (4h/3) P;+J. (32) 

Given P at r, and r,,, , we get Pla+2 with a local truncation error --h5Pc5)/90. 
“Overlapping” the rule at r,+l and r,+2 then gives P,,, , and so on. As with 
scheme (B), only P, is given, so another scheme (such as scheme (A)) must be used 
to start this procedure. The algorithm here requires 11 multiplications per step. 
Note that two vectors, P, and P,‘, need to be stored for each step. 

4. FORMAL ERROR ANALYSIS 

We have analyzed theoretically the effects of truncation and propagation of 
errors for each quadrature scheme, following the approach in standard reference 
texts [6-l 11. Denoting the exact solution of (4) by p, the error at step n is the vector 

e,=P,--FP,. (33) 
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Also, due to the linearity of (4), the error in derivatives is simply 

E,’ E P,’ - P,’ = M, . E, . (34) 

By “exact solution,” we mean that P satisfies the quadrature formula with the 
truncation term included; e.g., for scheme (A) 

P n+l = (1 + W) M,+d - $‘n + WV pn’) + Tn+l. (35) 

To obtain formulas for the errors E, , we use the standard assumptions that over 
a range of steps, N/z, both M and T are approximately constant. Taking M locally 
constant brings about considerable simplification of the formulas due to its 
nilpotency. The error equations deduced then from (15), (18) (31), and (32) are 

(A) en+1 = (1 + AM) - E, - T, , WW 

(B) ~,+a = 2hM * s+l + en - TB , WW 

(Cl c,+z = (1 + 2hM) * E, - T, , (36~) 

(D) en+2 = (4h/3) M - ~,a+1 + (1 + (2h/3) W - E, - TD , (364 

where TA and TB are proportional to ha, the other two to h5. Before analyzing 
these difference equations, we point out that they group themselves into two 
distinct classes; (A) and (C) are structurally equivalent, as are (B) and (D). The 
numerical results obtained later confirm this dichotomy. 

An understanding of sorts may be obtained by ignoring the coupled nature of 
(36) and replacing the off-diagonal elements of M by zero. This examines the way 
errors in A(r) depend on A, and errors in B(r) depend on B. We let 

(37) 

with the + (-) sign taken for errors in A (B). For schemes (A) and (C), the results 
follow immediately [12]: 

E, = X”EO + 7, (38) 

(A) h=1+71, 7 = T/7), 

(Cl x = (1 + 292, T = T/2q 

where E,, is an arbitrary constant. In either case, h is either > 1 or < 1 as 7 is > 0 
or < 0. Thus, the error grows or decays steadily. On the other hand, for (B) and 
(D), we follow Milne [13] to obtain 

En = A-m + t-p)" how + T/27, (39) 

(f-9 A = q + (1 + r1Y2, p = -7 + (1 + r12y’2, 

(D) A = $7) + (1 + $77 + $772Y’2, p = -&I + (1 + 37) + $r12)1’2, 
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where cOA and E”& are arbitrary. When 71 is small, either X > 1 for 77 > 0, or ~1 > 1 
for 7 < 0. Accordingly, the error always grows, and may alternate in sign as well. 
Note that these behaviors are essentially independent of the order of truncation. 

Of the several approaches tried for analyzing the full error laws, all but one were 
frustrated by the extreme degeneracy of M. This degeneracy is exemplified by the 
remark that M turns any vector parallel to W, except W itself, which it annihilates. 
We take advantage of this to triangularize the error laws. Specifically, let 

% = a,U + b,W, (40) 

T = & + flW. (41) 

In all cases we take Ed = 0, and for (B) and (D) we also take Ed = 0. As described 
above, the action of M on any vector C, is 

hM . E, = ya,W, (42) 

y = hVU+ - U. (43) 

Substituting (40) and (41) into (36), and using (42), we can equate separately the 
coefficients of U and of W. We find the equations for a, are uncoupled from those 
of b, and are easily solved. For example, for (A), 

a n+l = a, - 01, a, = -m; 

similar results obtain for the other cases. The equations for b, , with the explicit 
form of a,, inserted, then lead to essentially the same law for all cases: b, is pro- 
portional to rz/3 and n2yol. 

We do not go into more detail here because the results do not describe 
the numerical experiments in the next section. This is due to the assumed constancy 
of M over the range r to r + Nh. In practice, we are interested in taking as large a 
step size as possible, and the range of h we investigate renders both the assumed 
constancy of M and the subsequent analysis invalid. 

It is interesting that the crude analysis in (38) and (39) actually describes the 
results of the numerical experiments. Also, based upon the explicit form of M in 
regions of interest, certain approximations may be introduced into the full laws, 
and the altered coupled laws do show behavior similar to (38) and (39). However, 
since the assumptions on which these results are based are hard to really justify, we 
do not pursue this here. 

A heuristic explanation of the distinct behaviors of schemes (C) and (D) hinges 
on the nilpotency of M. In (D), P,,, only depends on the derivative of P,, . This 
derivative tells P,,, nothing about P,, itself, since M;tI does not exist. Thus, the 
abscissas at even and odd quadrature points are quite independent. On the other 
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hand, in (C), the simultaneous solution for Pk,, and Pi+z using (19) and (20) 
actually implies that P,+1 and Pn+% must lie on the same segment of parabola 
issuing from P, . This forces a continuity onto P, , P,,, , and P,,, which does not 
allow significant oscillations to develop. 

5. NUMERICAL EXPERIMENTS AND COMPARISON OF SCHEMES 

We have coded all four quadrature schemes in standard FORTRAN and applied 
them to the calculation of both bound and scattering states in several potentials. 
A handy criterion of comparison is the “efficiency index” e8 , defined as follows. 
Specify a tolerance of error to be allowed in the calculated result. This will require 
h for scheme s to be less than some maximum step h, . Of course, h, also depends 
on the problem. Then, for a scheme which requires n, operations per step, we 
define 

e, = h,/ns . 

The interpretation of 8, follows from noting that L/B, is the total number of 
operations for scheme s to integrate a distance L, keeping the error of the cal- 
culated result within the specified tolerance. Generally, the larger 0, , the more 
efficient is the scheme (storage considerations excepted). 

We remark that we have been assuming the functions f, g, and V to be given. In 
practice, a significant portion of the total computation time is devoted to their 
evaluation, especially in large multichannel calculations. Thus, 0, is a quite conser- 
vative measure: Methods having larger h, (fewer evaluations off, g, and V) may be 
much more efficient overall than 0, would suggest. In the numerical experiments, 
we shall find the following rules: (1) eA and 8, are always smaller than 8, and do , 
although often on the same order of magnitude; (2) the quadratic schemes have h, 
values roughly four times as large as those for the linear schemes. We shall also 
find scheme (B) is not a useful computational alternative, but it has been treated 
on an equal basis with the others, inasmuch as it bears the same relationship to (A) 
within the linear approximation as (D) does to (C) within the quadratic approxima- 
tion. 

Eigenvalues E of bound state problems (E < 0) are found by using 

f(r) = K-l/’ sinh KY, g(r) zz -K-1/2e-KT (45) 

and adjusting E (= -+K~) until B(r) vanishes for large r. For scattering problems 
@ > O), 

f(r) = k-li2 sin kr, g(r) = -k-If2 cos kr, (46) 
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where k = (2E)1/2 and the quantity of interest is the phase shift 6, defined by 
tan 6 = limr,, [-&)/B(r)]. F or simplicity, we have used only the I = 0 Green 
functions here. Throughout this paper we have avoided a factor of 2 appearing 
with V by assuming the units of V are those of 2E (i.e., for E in a.u., V is in Ryd.). 
The zero of energy is fixed by lim,,, V(r) = 0. Finally, note that for these choices 
off and g, the wavefunction 9 has the normalization d+(O)/& = k1/2 or .1/Z. 

In the following problems, we examine errors in the bound state E and scat- 
tering state 6 values calculated by each scheme. Such calculated quantities are 
functions of h and depend upon the scheme used for their evaluation; they will be 
denoted generically by q,(h). We distinguish errors in qs from the error E, discussed 
in the last section, but shall consider both kinds. This corresponds to the usual 
distinction between “goodness” of expectation values of wavefunctions and 
“goodness” of the wavefunctions themselves. 

The problem we have analyzed in greatest detail was chosen because analytical 
results are available for A(r), B(r), the eigenvalues and the phase shifts. Thus 
errors in the schemes can readily be assessed exactly and a fairly rigorous com- 
parison of schemes made. The potential is the square well 

I/= -8, O<r<2, 

= 0, 2 < r. 

TABLE I 

First Eigenvalue E(l) of the Square Well, Calculated by Each Scheme for 
Several Step Size@ 

h (4 @I c-3 @I 

0.2 -3.213172462 -10.147923140 -3.118603298 -4.094478625 

0.1 -3.142751128 -4.923566462 -3.119867575 -3.274408525 

0.05 -3.125620651 -3.432174191 -3.119946357 -3.141154734 

0.025 -3.121366952 -3.162303213 -3.119951278 -3.122723994 

0.0125 -3.120305323 -3.125096751 -3.119951586 -3.120306119 

0.00625 -3.120040028 -3.120517178 -3.119951607 -3.119996432 

0” -3.119951447 

o+ -3.119949052 

-3.112694597 -3.119951607 -3.120144927 

-3.072346218 -3.119951606 -3.121495278 

Exact -3.119951606 

5 Row 0* contains results extrapolated from h = 0.0125; row 0+ contains those extrapolated 
from h = 0.025. 
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TABLE II 

Second Eigenvalue E@ of the Square Well, Calculated by Each Scheme for Several Step Sizes” 

h (4 @I (C) (D) 

0.2 -0.759086556 -10.14792314 -0.712399450 -0.419183796 

0.1 -0.710351664 -4.923566461 -0.695711285 -0.650260895 

0.05 -0.698566183 -0.522190408 -0.694735794 -0.688844991 

0.025 -0.695643760 -0.668994982 -0.694675718 -0.693935629 

0.0125 -0.694914636 -0.691126611 -0.694671976 -0.694579356 

0.00625 -0.694732446 -0.694164345 -0.694671742 -0.694660157 

o* -0.694671595 

o+ -0.694669619 

-0.698503821 

-0.717929840 

Exact -0.694671728 

-0.694671727 -0.694622271 

-0.694671713 -0.694275005 

@ Row 0* contains results extrapolated from h = 0.0125; row Of contains those extrapolated 
from h = 0.025. 

TABLE III 

Square Well Phase Shift for E = 1, Calculated by Each Scheme for Several Step Size@ 

0.2 0.365652838 1.094357722 0.342331962 0.295750148 

0.1 0.339598001 0.343282890 0.332317936 0.329027631 

0.05 0.333623353 0.303820559 0.331715076 0.331420666 

0.025 0.332160255 0.327853104 0.331677696 0.331647462 

0.0125 0.331796345 0.331079066 0.331675363 0.331671976 

0* 0.331675042 

0+ 0.331672556 

0.332154387 0.331675207 0.331673610 

0.335863952 0.331675204 0.331662582 

Exact 0.331675210 

G Row 0* contains results extrapolated from h = 0.0125; row Of contains those extrapolated 
from h = 0.025. 
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TABLE IV 

Square Well Phase Shift for E = 10, Calculated by Each Scheme for Several Step Sizes” 

11 6% (B) (0 CD) 

0.2 - 1.498007285 -1.684422131 -1.530819741 - 1.540923503 

0.1 -1.551577940 - 1.587401988 -1.565583771 - 1.562664423 

0.05 -1.564056012 -1.574156911 - 1.56795650 - 1.567422906 

0.025 -1.567122343 - 1.569884707 -1.568129477 - 1.568049857 

0.0125 -1.567885661 - 1.568610640 -1.568139164 -1.568128588 

0* -1.568140100 

0’ -1.568144453 

-1.568185951 -1.568139810 - 1.568133837 

- 1.568460639 -1.568139732 - 1.568091654 

Exact -1.568139814 

a Row 0* contains results extrapolated from h = 0.0125; row 0+ contains those extrapolated 
from h = 0.025. 

We calculated the two lowest eigenvalues E(l) and ,?P) (converged to nine signifi- 
cant figures) and phase shifts P) and iYz) for two energies by all four schemes and 
with several step sizes. The results are shown in Tables I-IV, along with the exact 
values (see Appendix B). It is evident that the calculated quantities approach the 
exact ones quite closely as h gets small enough, regardless of which integration 
scheme is employed. It is more useful, though, to inquire how good the calculated 
results are as h gets larger. To examine this, consider the percentage errors p,(h), 
in the calculated quantities. These are graphed as functions of h on log-log scales 
in Figs. l-4. From these figures it is easy to obtain h, , and hence 0, . We select the 
reasonable tolerance of 0.1 y0 and read off the required h, values. These and the 
computed OS are listed in Table V. We conclude that for bound states, schemes (A) 
and (C) are superior (8, > 8, > BD > 6,) while for scattering states (C) and (D) 
are to be preferred (0, > e. > Ba > 0,). We also note that h, is three to seven 
times larger than hD for bound states, and nearly 4hD/3 for both scattering states. 

Returning to the percentage errors, we note that for 0.025 < h < 0.1, the pS 
values span several orders of magnitude, with the orderings 

PC <PA (PD <PB for E > 0, 

PC <PO <PA <PB for E > 0. 

However, it appears from the figures that these orderings will change for different 
values of h. In particular, Figs. 3 and 4 suggest that for h N 0.4, both pc and pD 
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TABLE V 

Summary of Efficiency Parameters from the Calculations on the Square Well 

(A) (B) 03 @I 

E(l) h, 0.037 

lose, 6.18 

0.247 0.032 

19.0 2.87 

E’S, h, 0.021 

1038, 3.52 

0.005 

0.78 

0.003 

0.50 

0.082 0.030 

6.31 2.72 

Sll) h, 0.021 0.005 0.085 0.054 

lOV* 3.44 0.85 6.53 4.92 

p’ h, 0.031 0.026 0.088 0.062 

lO%$ 5.16 4.37 6.76 5.62 

will exceed pA . This change in the ordering ofp, and PD was noted by Hayes and 
Kouri [3]. 

Around h = 0.05, the large range in ps for different s is impressive. Specifically, 
We have PB > PA and PO > PC . This might be unexpected since both (A) and (B) 

have similar local truncation errors, as do both (C) and (D). The reason for such 
discrepancy is related to the error propagation characteristics of the schemes. 
This connection is obvious when one recalls that both eigenvalues and phase 
shifts are determined directly from the values of A(2) and B(2), so the question is 
how quadrature errors get into these values. We have examined this by comparing 
the calculated functions B,(r) with the exact B(r) in Appendix B for both a negative 
and a positive energy. 

For E = -3, the exact B(r) is a monotone decreasing function between B(0) = I 
and B(2) = -0.0031. In Figs. 5a and 5b we show the deviations of the calculated 
B,(r) from this exact one. Note that the deviations for scheme (B) have been 
scaled down by a factor of l/10 to get them in the figure. We note a curious distinc- 
tion in the errors at even and odd quadrature points for the early steps of (C). As 
pointed out in its derivation, (C) only needs to calculate A(r) and B(r) at even 
points. Four additional statements were added to the routine to get the values at 
odd points also. We believe this distinction in errors in the first eight steps is due 
to the different orders of the local truncation in (19) and (20). The errors in both 
(A) and (C) appear to be damped, so this effect soon disappears. For both (B) and 
(D), the errors at consecutive quadrature points are seen to oscillate with growing 
magnitude. In the figure, the even and odd sets of points have been connected and 
are noted to always lie on opposite sides of zero. 

581/21/4-z 
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FIG. 5a. Deviations in B(r) from the exact 
function for E = -3. 

FIG. 5b. Deviations in B(r) from the exact 
function for E = -3. Those for scheme (B) are 
10 times larger than indicated. 

The results in Fig. 5 correspond very closely to the behavior suggested by the 
“crude” error analysis in the last section. The parameter 7 for these calculations 
of B(r) is 

17 = -8hc1 sinh KrecKT < 0. (48) 

Thus, (38) and (39) show that errors in (A) and (C) should be damped, while those 
in (B) and (D) should oscillate and grow. 

For E = 1, the exact B(r) is again a monotone decreasing function between 
B(0) = 1 and B(2) = -0.9448. Deviations of the calculated B,(r) from this function 
are shown in Figs. 6a and 6b. Errors in (C) again bifurcate, but this time they 
remain distinct; the even and odd points show an interesting intertwined sinusoidal 
behavior. On the other hand, errors in (A) veer sharply away from zero to a 
maximum deviation of 0.0106 at r = 1.5, then return as abruptly toward zero. For 
(B) and (D), the deviations oscillate and grow to some maximum values between 
r = 1.0 and 1.3, then turn around and invert through zero. Note that errors in (B) 
had to be scaled by a factor of l/10 again to get them on the figure. 

As for the negative energy case, these errors are nicely described by the “crude” 
error analysis. This time, 

7 = -4hkl sin 2kr. (49) 

The wavelength 2n/k for an energy E = 1 is h = 4.4. This gives 7 a wavelength of 
2.2, which means 

77 <o, 0 < r < 1.1, 

?1 >o, 1.1 < r < 2.2. 
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FIG. 6a. Deviations in B(r) from the exact 
function for E = +l. 

FIG. 6b. Deviations in B(r) from the exact 
function for E = + 1. Those for scheme (B) are 
10 times larger than indicated. 

The value 1.1 is remarkably accurate for predicting the positions of maximal error 
in (A), (B), and (D), while (38) and (39) also predict the monotonic growth and 
decay for (A) and the oscillations for (B) and (D). An extremely intriguing cor- 
relation for (C) is that, although the source of behavior is unknown, the inter- 
twining of the even and odd errors occurs with very nearly the 1.1 wavelength! 

We have made similar observations for smaller step sizes, and the results are 
predictable by (48) and (49). For smaller h, the deviations and oscillations are 
considerably less, but maintain the same qualitative behavior. 

Recall that the more detailed error analysis did not evince the interesting 
behaviors just discussed, and was excused from doing so by faulting the assumption 
of constant M. For the square well, M is about as slowly varying as it ever will be. 
Yet, for E = -3, the vector W(r) rotates about 90” between r = 0 and r = 1. 
Between r = 1 and r = 2, it maintains this perpendicular orientation, but grows 
by a factor of 103. For positive energies, W always has a constant length (W . W = 
k-l) and rotates with angle kr. When E = 1, this amounts to ~80” for each unit 
of r. Fortunately, it appears that the error analysis in (38) and (39) provides a 
reasonable framework for 
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core at r. = 0.5, since v(O.5) - 4 x 105. In Appendix C, we discuss two distinct 
methods of including this modification. The range of integration extended to 5.5 
for the eigenvalue determination, and to 10.5 for the phase shifts. These values are 
not meant to give results converged in all respects to those of the exact potential, 
but the specified integration does provide a well-defined problem on which the 
performance of the various schemes can be compared. Tables VI-VIII contain the 
results. A most noteworthy feature appears in Table VII. For E = 100, a step 
size of 0.1 only puts 46 steps into each full wavelength of the wavefunction; 
schemes (C) and (D) are in error by -SO%, yet scheme (A) gets 6 to within 18 ‘A! 
Going to small h as described in Section 6, we can obtain the h = 0 results shown 

TABLE VI 

Lennard-Jones Phase Shift for E = 10, Calculated by Each Scheme for Several Step Sizes” 

h (A) 0% ((3 03 

0.1 0.6048221883 0.5156067274 

0.05 0.5776768849 0.5455550075 

0.025 0.5711954818 0.5646763935 

0.0125 0.5695927474 0.5679872240 

0.00625 0.5691931418 0.5687933640 

o* 0.5690585026 0.5690908342 

a Row 0* results are extrapolated from h = 0.00625. 

0.5737187323 0.6334273823 

0.5711208047 0.5669223504 

0.5691939037 0.5690242878 

0.5690685289 0.5690578854 

0.5690605646 0.5690599002 

0.5690600336 0.5690600345 

TABLE VII 

Lennard-Jones Phase Shifts for E = 100, Calculated by Each Scheme for Several Step Sizes” 

h (A) (B) CC) 

0.1 0.8581602679 1.553243597 1.065524863 

0.05 0.7554347711 0.6566486675 0.7377628439 

0.025 0.7329784126 0.7108560024 0.7265172846 

0.0125 0.7275586097 0.7221558959 0.7258170590 

0.00625 0.7262151807 0.7248728283 0.7257714609 

o* 0.7257673710 0.7257784724 0.7257684210 

(D) 

1.098885110 

0.7192824489 

0.7255578619 

0.7257558271 

0.7257676109 

0.7257683965 

a Row 0* results are extrapolated from h = 0.00625. 
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TABLE VIII 

First Lennard-Jones Eigenvalue, Calculated by Each Scheme for Several Step Sizes” 

h C-4 0 m 03 

0.1 -3.659382251 -a -3.510556783 -5.505594461 

0.05 -3.539682107 -2.389180493 -3.506372090 - 3.462707594 

0.025 -3.511017559 -3.486912450 -3.501877859 -3.501465743 

0.0125 -3.503925202 -3.496839632 -3.501587162 -3.501562600 

0.00625 -3.502156660 -3.500388544 -3.501568778 -3.501567240 

0* -3.501527146 -3.501571515 -3.501567552 -3.501567549 

LI Row 0* results are extrapolated from h = 0.00625. 
b Did not converge to any value. 

TABLE IX 

Summary of Efficiency Parameters from the Calculations on the Lennard-Jones Potential 

g1, h, 0.013 0.009 0.036 0.050 

low, 2.15 1.52 2.75 4.58 

ala, h 0.008 0.006 0.025 0.034 

1088, 1.33 0.93 1.89 3.13 

Jp’ h, 0.015 0.011 0.046 0.064 

lOW* 2.54 1.79 3.51 5.86 

in the last row of each table, and use these values to compute and plot the percent 
deviations in the calculated values of E and 6 as before. The h, and 6, values so 
obtained are listed in Table IX. 

We make two observations. First, we have 8, > 0, and 8, < 8, for all three 
calculations. The reversal of the second inequality from the square well problems 
is curious. Second, and equally curious, we now have hD - 4h,/3 for each calcula- 
tion. Apparently, scheme (D) works better than (C) on this potential. 

For this problem, too, we have examined the numerical A and B functions and 
find, as before, that significant oscillations can develop in the results of (D) if h is 

not small enough. For example, integration with h = 0.05 for E = -3.5 gives a 
B(r) which goes through a maximum of 0.2282(10) at step 10, becomes irregular 
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between steps 20 and 30 as the values at even and odd quadrature points begin to 
split apart, and finally shows the following oscillations for steps 40 through 43: 

+0.4640(7), -0.4618(7), +0.4629(7), -0.4643(7). 

(Numbers in parentheses here are powers of 10.) These oscillations persist, even as 
the integrals “converge” beyond the range of V. By step 70, the function A behaves 
similarly. Redoing the integration with h = 0.025 produces a B(r) which goes 
through a maximum of 0.9265(14) at step 20, again develops irregularities, and 
finally stabilizes with much less noticeable oscillations at steps 120 through 123: 

-0.7486(10), -0.7699( lo), -0.7482(10), -0.7696(10). 

For h = 0.05 and E = 100 (approximately 12 steps per wavelength of 4) the 
relative oscillations of B(r) at step 40 are approximately 0.016. 

The existence of such distinct values of the converged integrals at consecutive 
quadrature points might be expected to lead to distinctly different values of E or 6 

depending on whether the chosen integration range (r, to r,, + Nh) contains an 
even or odd number of steps. In Table X, we compare schemes (C) and (D) for 
several different step sizes to see how much their calculated W, W), and E(l) differ 
if one stops the integration at step N or N - 1. Since quadrature errors in (A) and 

TABLE X 

Comparison of Schemes (C) and (D) at the Last Odd and Even Quadrature Points for the 
Calculations in Tables VI and VII 

h Odd 

(C) 

Even 

03 

Odd Even 

gll) 0.1 0.573719 

0.05 0.571121 

0.025 0.569194 

&v 0.1 1.065524 

0.05 0.737763 

0.025 0.726517 

Jp 0.1 -3.510557 

0.05 -3.506372 

0.025 -3.501878 

a Did not converge to any value. 

0.573719 0.468364 0.633427 

0.571121 0.569934 0.566922 

0.569194 0.569025 0.569024 

1.065525 0.330773 1.098885 

0.737763 0.723080 0.719282 

0.726517 0.725553 0.725558 

-3.510557 -a -5.505594 

-3.506372 -3.537734 -3.462708 

-3.501878 -3.501508 -3.501466 
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(C) have previously appeared to be simple, smooth functions of r, we expect them 
to show little effect in this comparison, The errors for (B) and (D) oscillate, how- 
ever, and may lead to significant differences between values at consecutive qua- 
drature points. A small discrepancy is expected for all schemes since V (rO + N/z) is 
not zero, though it is very nearly so. This slight effect is presumably the only cause 
of discrepancies for h < 0.025. However, for larger h, the discrepancies in scheme 
(D) results are too large to be accounted for thusly. Rather, these cases are those 
for which significant oscillations are occurring. For h = 0.05, the actual deviations 
in the integrals {A, B} at consecutive quadrature points were approximately 
(0.6 %, 0.1 %} and (0.8 %, 1.6 %} during calculations for 8(l) and P), respectively. 
However, the deviations in the 6 values themselves were both 0.5 %. This indicates 
that the oscillations in A and B maintain some phase coherence, thus moderating 
the overall error. The discrepancy in P is about 2 ‘A for this step size. The reason 
it is no worse is that the B integral whose magnitude is being forced to zero, can be 
forced as well from below as from above zero. Note that the magnitude 10’ is 
“small” compared to the maximum B magnitude during the calculation. 

We remark that both the A and B integrals computed by schemes (A), (B), and 
(D) get fairly large [14] for problems of this nature (V(r,,) very large) since the first 
numerical contributions to B go as hV(rJ, and those to A go as h2V(r,,). However, 
scheme (C) is not a step-by-step integration (it is implicit at odd quadrature 
points), so it does not give such artifically strong contributions for a given h, and 
for this problem it results in integral values of only half as many orders of magni- 
tude. It may be useful to employ such implicit schemes always at the start of the 
integrations, but we have not pursued this. 

Finally, we remark that comparisons similar to the above have been made for 
calculations on several other problems, e.g., bound states in the hydrogen p-state 
(Fues) potential 2/r2 - 2/r, scattering from the repulsive angular momentum 
barrier 1(1 + l)/r2, and two different potentials which support shape resonance. 
All studies resulted in similar conclusions. 

6. GENERALIZED RICHARDSON EXTRAPOLATION 

“Richardson extrapolation,” or “Richardson’s deferred approach to the limit,” 
is a method which attemtps to eliminate the dependence of a numerically deter- 
mined integral on the quadrature scheme used for its evaluation [15]. We have 
previously applied this idea to the noniterative integral equation method for 
determination of R-matrix elements for h = 0 in a multichannel e - H scattering 
calculation and found it to be remarkably accurate [16]. Our “generalization” is to 
apply the idea to E and 6 directly, rather than to the integrals used for their deter- 
mination. We now apply it to the schemes investigated here. 
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Referring to Figs. 1-4, the linearity of the log-log plots suggests that the cal- 
culated quantities q,(h) have a well-defined step size dependence in the form 

q,(h) = q(O) + %hYS, (51) 

as long as h is not too large. Heuristically, such a form can be argued as follows. 
The quadrature formulas we have used are related to exact integration by error 
terms of the form Nh”[d”P/dr”],,, , where .$ lies within the interval of integration 
L = A%. Suppose that 5 does not change much as h is reduced. (The conditions 
under which this is true for the trapezoidal rule were studied by Richardson and 
Gaunt [17].) Then not only do we have a bound on the quadrature error, but we 
expect it to depend on h approximately as cLh+l. Since qs(h) depends in a simple 
algebraic manner on the calculated integrals, this leads to (51) with ys one less than 
the order of local truncation for the quadrature scheme. To be generally useful, we 
should like y to depend only on the scheme and not the problem at hand, although 
01 should depend on both. We now summarize the relevant consequences of 
assuming (51), and then apply them to the calculations in Section 5. 

We can calculate ys easily from (51) if we have qs at three values of h. Specifically, 
given qdh), q,(W, and q,(4h), we eliminate q(0) and olhy to get 

y,=(ln2)-lln q&w - qs(4h) . 
[ qs@) - q&W I 

(52) 

Furthermore, we can eliminate olhy from (51) written for qs(h) and q,(2h) to arrive 
at a simple extrapolation law 

do) = q,(h) + P - I>-’ kdh) - q&WI, (53) 

giving the exact value of q in terms of calculated quantities. Let t be the specified 
tolerance allowed in q8 . This is achieved if h is less than the value h, determined 
from 

t = IMhJ - dW/dO)l . (54) 

This gives h, as 

A.5 = I MWs l1”‘8, (55) 

where 01, comes from 

01~ = [q,(2h) - q,(h)]/hYa (2ys - 1). (56) 

These equations provide the method by which the results in Tables V and IX were 
actually obtained. 
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TABLE XI 

Values of the Generalized Richardson Exponent ys, Calculated from the Square Well and 
Lennard-Jones Potential Results” 

(A) Cs) 6-2 CD) 

Square well 
EC” 2.0024 
E’2, 2.0029 
p 2.0074 
g2, 2.0062 

r 2.0047 

(0.12 %) 

Lennard-Jones 
~0) 2.0039 
p 2.0123 
E”’ 2.0037 

f 2.0066 

(0.24 73 

2.8581 3.9979 2.9303 
2.7297 4.0049 2.9833 
2.8972 4.0021 3.2097 
1.7455 3.9891 2.9933 

2.5576 3.9985 3.0292 

(21. %) (0.17 %) (4.1 %I 

2.0381 
2.0563 
1.4840 

1.8595 

(17. %I 

3.9766 
3.9408 
3.9830 

3.9668 

(0.57 %) 

4.0596 
4.0704 
4.3836 

4.1704 

(4.4 %I 

Q The average exponent 9 for each scheme is computed for each potential; its percentage 
standard deviation is in parentheses. 

The discussion following (51) suggests that the values of yS should be 3/a = 
yB = 2 and yc = yn = 4. To see if these were correct, we applied (52) to the data 
in Tables I-IV, taking h = 0.025, and to the data in Tables VI-VIII, taking 
h = 0.00625. The two sets of yS so obtained are shown in Table XI. 

The calculated average values TS from the square well results would lead to 
integral exponent choices yA = 2, yB indeterminate, yc = 4, and yn = 3, while 
the Lennard-Jones averages suggest yA = yB = 2, and yc = yD = 4. From the 
percent standard deviations given in parentheses, we must reject the use of 
Richardson extrapolation for (B). We are also discouraged by the apparent depen- 
dence of yD (as well as rB) on the problem being solved. These two schemes were 
also the only ones to show obvious deviations from linearity in Figs. l-4. The 
conclusion here is that (51), with y determined from the error term for the scheme, 
is not suitable for “overlapping” schemes, but can be expected to be reliable for 
repeated segmental schemes like (A) and (C). 

To demonstrate the validity and usefulness of the extrapolation law in (53), we 
used the assumed exponents 3/A = yE = 2, yc = yD = 4, and applied it to the 
data in Tables I-IV and VI-VIII. In the square well problem, we used h = 0.0125 
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to get the first set of values for h = 0 (labeled 0*) and then repeated the extra- 
polation from further out, h = 0.025 (labeled O+). As expected, for (A) and (C) the 
extrapolation is very good, and picks up several orders of magnitude closer agree- 
ment with the exact results. 

In the Lennard-Jones problem, we took h = 0.00625 for the extrapolation. Both 
(C) and (D) show excellent agreement (recall j7D here was close to the assumed 
value of 4) and we assume their average extrapolants to be the correct zero step 
size result. This gives the values of q(0) used in (55) and (56) for evaluating h, and 
0, for this problem in Table IX. 

Our generalized Richardson extrapolation (applied to q,(h), rather than to the 
integrals themselves) has two primary uses. First, calculated results can be con- 
verted into quadrature-independent values, as we have done here. Second, it can 
be applied in reverse to estimate quadrature error in results calculated with finite 
step size h. As an example, one can calculate 6 for a number of step sizes to deter- 
mine that h is actually in the region for which (51) holds. Then 1[6(h) - 6(2/z)/ 
(2~8 - 1) S(h)]\ gives an estimate of the quadrature error present in the calculation 
with step size h. For problems as complex as e - H scattering, such estimates are 
found to be relatively insensitive to E, although they do differ for different partial 
wave sets. Thus, one obtains quite easily a quantitative statement of convergence 
of his results with respect to h. Quantities of kinetic interest can then be computed, 
with their quadrature-related error approximately known. 

CONCLUSIONS 

We have shown that for the noniterative integral equation method the quadratic 
schemes (C) and (D) are generally superior to the linear schemes (A) and (B) in both 
accuracy and efficiency, with little additional storage requirements. This is in accord 
with earlier studies [3]. Scheme (B) was found to serve no useful purpose in this 
application. Scheme (A) has demonstrated well its most attractive features- 
simplicity of implementation, stability of solution, and extremely accurate 
correction to zero step size by an h2 Richardson extrapolation. 

For specified accuracy, scheme (C) allows at least a threefold increase in step 
size for all cases considered [18]. Scheme (D) allows a twofold increase in the 
square well problem, and a fourfold increase in the Lennard-Jones case. This is 
enough to make both more efficient in execution than (A), and to reduce signifi- 
cantly the number of required f, g, and V evaluations. Both have similar storage 
requirements, and nearly the same number of operations per step. However, we 
have found that scheme (D) has a disturbing tendency toward instability, which 
must be checked carefully for each application. Oscillations between even and odd 
quadrature points, which may not be large enough to cause obvious errors in an 
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unfamiliar problem, can affect the results by several percent. These oscillations 
appear to be inherent in the overlapped nature of the scheme, and can only be 
controlled by step sire reduction. This problem has not received much attention, 
presumably because the scheme has been mostly used in scattering problems where 
the effect is smaller. Bound state problem bring out the worst in the scheme, so it 
seems unsuitable for these. This may be of concern for the closed channels in a 
close coupled computation and is currently being investigated. Finally, we found 
that Richardson extrapolation is not reliable here, since y depends on the problem 
and may or may not be the expected value 4. Of course, an appropriate y can be 
found, but this requires additional study of each problem. 

Scheme (C), our quadratic rule, seems to be free of such difficulties. It appears 
to be essentially as stable as (A) for any h, which was suggested by the error 
analysis. This was even enhanced for bound state problems, contrary to (D). The 
only oscillation which was found had very small magnitude (see Fig. 6a), and was 
due to the oscillation of the propagation matrix M itself. Finally, (C) was found to 
allow very accurate Richardson extrapolation with the assumed exponent y = 4, 
independent of the problem. 

An interesting scheme [19] which we have not studied consists in cyclic use of 
the ordinary Simpsons rule in (20) with Simpson’s “3/g rule,” 

P - P, + (3W)Pn’ + 3P;+1 + 3p’,+, + p’,,,) n-t3 - 

with error --3I~~P’~)/80. Given P, and P,+l , one uses (20) to get Pn+2 , then uses 
these three values in the “3 rule” to get Pn+3 . The cycle is then repeated, starting 
with Pn+2 and P,,, and obtaining successively Pn+4 and P,,, . Similar to our 
quadratic rule, both calculated points are apparently constrained to lie on the same 
approximating cubic and are not expected to lead to the instability which offends 
the overlapped Simpson’s rule. 

APPENDIX A 

In abbreviated notation, we rewrite (1) as 

where y = 0 or 1. We then use sr dr = Jr dr - Ji dr to get 

642) 
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where r = y + J; f V# dr, and is an unknown constant. Assuming it is nonzero, 
introduce a new function by z,b(r) = +(r) lY Then r factors from (A2) to give (2) 
of the text, with r defined by 

(1 - joffi gVr$ dr) I’ = y. (A3) 

Since r is only a normalization factor, it is unnecessary for extracting the behavior 
of the system from $. In particular, note that for bound states y = 0, but the 
required asymptotic form of $ also demands that 1 - JF gV+ dr = 0, thus leaving 
r completely arbitrary. 

APPENDIX B 

Inasmuch as the square well potential provides an undergraduate problem in 
quantum mechanics, we only summarize the necessary results not usually given in 
textbooks. The two wavenumbers of importance are the one in the well (0 < r < a) 

H = (- V + 2E)1/2, V in units of 2E, 

and the one in the zero-potential region (r > a) 

K = [ 2E l1l2. 

These expressions are valid for both E < 0 and E > 0. For E < 0, the function B 
is 

B(r) = e-Kr (cos Hr + K sin Hr/H). (Bl) 

Eigenvalues are those values of E for which B(a) = 0, and the well-known trans- 
cendental equation for such values follows from (Bl). For E > 0, the function is 

B(r) = (2H)-l [(H + K) cos(H - K) r + (H - K) sin(H + K) r], GQ) 

with the phase shift beyond r = a given by 

tan6= KcotaK- HcotaH 
K + H cot aH cot aK * (B3) 

As mentioned in the text, the availability of these analytical results, especially A(r) 
and B(r) for arbitrary E < 0, makes this problem quite important for the testing 
of numerical schemes. 
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APPENDIX c 

We briefly show the equivalence of two approaches in the integral equation 
method for introducing a hard core at r, to simulate the effect of potentials which 
are extremely large at separations less than r,, . 

In the first approach, one means by “hard core boundary condition” that the 
actual potential in the interval [O, r,] is so large that the wavefunction $(rJ is still 
essentially zero for numerical purposes. From (2), this suggests that the initial 
condition in (4) be modified to 

(Cl) 

and integration performed from r,, into the asymptotic region to obtain the phase 
shift 6. The absolute magnitudes of A@,,) and B(r,,) are arbitrary, so c can be 
chosen small enough that propagation from r,, out to the classical region does not 
lead to unreasonably large integrals. We note that if V is zero for Y > r,, , then one 
correctly obtains the “hard sphere” phase shifts 

(C2) 

Thus, this procedure inserts the hard core phase shift into the boundary conditions 
of the integration. 

An alternative view of the “hard core boundary condition” is that the wavefunc- 
tion is rigorously zero in [0, r,,]. In the theory of Green’s functions, the inner and 
outer solutions are constructed to satisfy the boundary conditions of the problem, 
so r,, becomes the effective origin, and in terms of the variable p = r - r,, we take 
(e.g., for I = 0) 

f(p) = k-li2 sin kp, g(p) = -k-1/2 cos kp. (C3) 

We then compute the solution to (4) in terms of p, but with V@ + r,,) appearing 
instead of V(r). Obviously, the phase shift 8 calculated by this procedure is relative 
to the origin at r, , so one has to add the “hard sphere” phase shift to get the 
correct result 

s = s + 6,. cc41 

For s-wave scattering, we find from (C2) and (45) that 6, is just kr, , for example. 
We favor neither method over the other for this simple problem, the only 

distinction being whether 6, is put in at the beginning or end of the calculation. 
However, the first method is probably to be preferred in the multichannel case, 
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since the second method would require a rephasing of both the A and B matrices 
before calculation of the R matrix. 

With respect to bound state eigenvalue determinations, the meaning of “hard 
core boundary condition” is irrelevant. Eigenvalues are intrinsic to the shape and 
magnitude of the specific potential, but not to its location. They will therefore be 
identical regardless of the method used to handle the hard core. Phase shifts, on 
the other hand, depend explicitly on the choice of origin by virtue of their definition 
as the phase of a scattered wave relative to a free wave emanating from the origin. 
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